Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    1391
  • Volume: 

    4
Measures: 
  • Views: 

    381
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 381

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

Issue Info: 
  • Year: 

    2022
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    8
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

J PATHOL INFORM

Issue Info: 
  • Year: 

    2023
  • Volume: 

    14
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    4
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 4

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2023
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    1
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

Scientia Iranica

Issue Info: 
  • Year: 

    2020
  • Volume: 

    27
  • Issue: 

    6 (Transactions D: Computer Science and Engineering and Electrical Engineering)
  • Pages: 

    3005-3018
Measures: 
  • Citations: 

    0
  • Views: 

    76
  • Downloads: 

    60
Abstract: 

Recently, many neural network methods have been proposed for multilabel classification in the literature. One of these recent methods is the Multi-Layer Extreme learning Machines ((ML)-ELMs) in which stack auto encoders are used for tuning their weights. However, (ML)-ELMs suffer from three primary drawbacks: First, input weights and biases are chosen rando(ML)y; second, the pseudoinverse solution for calculating output weights will increase the reconstruction error; third, memory and execution time of transformation matrices are proportional to the number of hidden layers. In this paper, Multi-Layer Kernel Extreme learning Machine ((ML)-CK-ELM) that uses a linear combination of base kernels in each layer is proposed for multi-label classification. The proposed approach effectively addresses the above-mentioned drawbacks. Furthermore, multi-label classification data are inherently characterized by multi-modal aspects due to a variety of labels assigned to each instance. Applying a combination of different kernels is the added advantage of (ML)-CK-ELM that implicitly assesses the inherent multi-modal aspects of multi-label data; each kernel can be effectively used to cover one of the modals better than other kernels. The empirical study indicates that (ML)-CK-ELM shows competitively better performance than other state-of-the-art methods, and experimental results of multilabel datasets verify the feasibility of (ML)-CK-ELM.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 76

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 60 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    43
  • Issue: 

    11
  • Pages: 

    3926-3941
Measures: 
  • Citations: 

    0
  • Views: 

    15
  • Downloads: 

    0
Abstract: 

This study focuses on the characterization and investigation of effective agents in medicinal plants and nanoparticles, aiming to understand their potential applications. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques were employed to analyze the structural and morphological properties of the samples. XRD provided valuable information on crystalline phases, crystal structure, and lattice parameters, while SEM revealed surface morphology, particle size distribution, and aggregation behavior. These techniques facilitated a comprehensive understanding of the physical and chemical properties, crucial for effective utilization. Machine learning ((ML)) analysis was employed to uncover patterns and correlations within the data. (ML) algorithms were used to identify significant features, establish predictive models, and gain insights into the relationships between sample properties and effective agents. This enhanced understanding of the factors influencing efficacy, paving the way for targeted applications. The study encompassed two main research areas. Firstly, a (ML) was developed to estimate Z, P>|Z|, and the 95% confidence interval by manipulating coefficients (COEF) and robust standard errors (ROBUST STD.ERR) in wider intervals compared to the experimental samples. The study revealed a direct relationship between coefficients and robust standard errors, with increasing coefficients leading to higher robust standard errors and an expanded 95% confidence interval. Additionally, the study emphasized the significance of income from Chinese medicinal materials in the financing process for growers, as income variations impacted their willingness to finance technology adoption. By exploring the connection between technology adoption and financing, the research aimed to enhance understanding and logical linkage, contributing to more effective and sustainable agricultural development.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 15

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

Payavard Salamat

Issue Info: 
  • Year: 

    2018
  • Volume: 

    12
  • Issue: 

    4
  • Pages: 

    249-259
Measures: 
  • Citations: 

    0
  • Views: 

    491
  • Downloads: 

    0
Abstract: 

Background and Aim: Artificial intelligence is a branch of computer science that has the ability of analyzing complex medical data. Using artificial intelligence is common in diagnosing, treating and taking care of patients. Warfarin is one of the most commonly prescribed oral anticoagulants. Determining the exact dose of warfarin needed for patients is one of the major challenges in the health system, which has attracted the attention of researchers. The purpose of this study was to determine the exact dose of warfarin needed for patients with artificial heart valves using artificial neural networks (ANN). Materials and Methods: A total of 9 multi-layer perceptron ANNs with different structures were constructed and evaluated based on a dataset including 846 patients who had referred to the PT clinic in Tehran Heart Center in the second half of the year 2013. Finally, the best structure of ANN for warfarin dose was investigated. All simulations including data preprocessing and neural network designing were done in MATLAB environment. Results: The effectiveness of ANNs was evaluated in terms of classification performance using 10-fold cross-validation procedure and the results showed that the best model was a network that had 7 neurons in its hidden layer with an average absolute error of 0. 1, turbulence rate of 0. 33, and regression of 0. 87. Conclusion: The achieved results reveal that ANNs are able to predict warfarin dose in Iranian patients with an artificial heart valve. Although no system can be guaranteed to achieve 100% accuracy, they can be effective in reducing medical errors.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 491

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    9
  • Issue: 

    3
  • Pages: 

    283-297
Measures: 
  • Citations: 

    0
  • Views: 

    8
  • Downloads: 

    0
Abstract: 

The field of bioceramics has emerged as a critical component in various medical and dental applications, with calcium phosphate (CaP) materials like tricalcium phosphate (TCP) gaining significant attention. CaP bioceramics are valued for their exceptional biocompatibility, osteoconductivity, and ability to promote new bone formation, making them invaluable in the optimization of dental implant integration and performance. This study explores a novel approach to developing versatile CaP-based ceramics that can find applications in the pharmaceutical, dental, and even ancient artifacts preservation domains, leveraging the power of Machine learning ((ML)) modeling techniques. Tricalcium phosphate, a widely studied CaP ceramic, was the focus of this investigation, as it can be fabricated with varying degrees of crystallinity and porosity to tailor its biodegradation and bone regeneration properties. Through the use of a feedforward artificial neural network (FFANN), the researchers were able to predict the changes in dental ceramics, biocompatibility, and tissue reactions across a wide range of non-toxicity and bone growth parameters. The FFANN modeling approach provided valuable insights into the relationships between these key attributes, allowing for the optimization of CaP-based ceramics for specific clinical and preservation applications. The versatility of TCP extends beyond dental implants, with applications in periodontal regeneration, tooth root repair, and even direct pulp capping procedures. By manipulating the material's composition and microstructure, researchers and clinicians can tailor the performance of CaP bioceramics to meet the diverse needs of the healthcare and cultural heritage sectors. As the field of bioceramics continues to evolve, the integration of advanced (ML) modeling techniques, such as the FFANN approach employed in this study, promises to unlock new possibilities for the development of innovative, tissue-friendly ceramics that can revolutionize dentistry, pharmaceutical formulations, and the preservation of precious ancient artifacts.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    3
  • Issue: 

    (ویژه نامه 10)
  • Pages: 

    57-58
Measures: 
  • Citations: 

    0
  • Views: 

    694
  • Downloads: 

    0
Abstract: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

ELECTRONIC MARKETS

Issue Info: 
  • Year: 

    2021
  • Volume: 

    31
  • Issue: 

    3
  • Pages: 

    685-695
Measures: 
  • Citations: 

    2
  • Views: 

    66
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 66

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button